All posts by Whitney Nistrian

Top 10 Algorithmia Blog Posts of 2018

Unsupervised learning

As 2018 comes to a close, we’d like to take a look back to see how our readers have interacted with our blog, which articles were the most read, and what that could tell us about the field of machine learning writ large.

We know 2019 will be a year of tremendous progress in tech, and we’re relentlessly curious and eager for it. We look forward to adding more algorithms for our marketplace, expanding our AI Layer to more industries, producing interesting articles about novel tech applications, and engaging with innovators in the AI and machine learning fields.

Let’s take a look back on our year:


In March, we published Introduction to Machine Learning to give readers an in-depth look at what machine learning is at the macro and micro level. We got great engagement from this piece and know it will have staying power even as the world of AI morphs and grows.


Machine learning applications in sentiment analysis are becoming more and more popular, and conducting sentiment analysis can provide a company with continuous focus group feedback to gauge customer satisfaction and contentment. The explanation of a specific data use case in How to Perform Sentiment Analysis with Twitter Data was our ninth most read article of 2018. 


A post from April on how computer vision works was insanely popular this year. Introduction to Computer Vision was shared more than 4,000 times by our readers, and provides a big-picture overview of the field of machine learning concerned with training computers to identify elements in images. It’s a hot topic in AI because of the pervasiveness of this technology. As our CEO said last year,



When you are asked by a computer to click on all of the images with cars or cats, or stairs in them, you’re the training set.


Introduction to Emotion Recognition was another tech overview article that was of much interest to curious tech readers in 2018. Like computer vision, emotion recognition trains computers to read the facial expressions of people in images to decipher their moods. This technology has many possible applications, including criminal justice: polygraph analysis, juror psychology, security surveillance systems and interrogation tactics, or in industry for fatigue monitoring for pilots and drivers. 


Haven’t you always wanted to know how deep learning works without ground truth? Introduction to Unsupervised Learning is for you (and for the more than 7,500 other avid AI news consumers who have read this post since April. And no, before you ask, unsupervised learning is not about classrooms without teachers present; actually it kind of is. 


Our intro posts sure were popular this year! (Perhaps in 2019 we’ll move on to intermediate posts.) Introduction to Optimizers comes in at the number four most-read article. Optimizers shape and mold machine learning models into their most accurate possible forms, and they’re the cousin of loss functions (see below). 


Much is still unfolding in the machine learning software field; but hardware is just as important when running multivariate algorithms at scale. Learning the different compute modes and which is best for building and deploying ML applications was a topic of supreme interest for nearly 12,000 savvy readers out there this year. Make some time today to read Hardware for Machine Learning.

Facial recognition


Facial recognition software was in the news a lot in 2018 so it makes sense that our post, Facial Recognition Through OpenFace was so popular. This article gives a good technical run-down of how OpenFace, a facial recognition machine learning model works.


Remember optimizers from above? Loss Functions can also evaluate machine learning models by determining how well an algorithm is modeling a dataset. Learn more about this tool in Introduction to Loss Functions, which helped educate more than 17,000 people this year. 


And finally! Our number one most-read post of 2018 is Convolutional Neural Networks in PyTorch! Convolutional neural networks are algorithms that work in tandem on large projects #convoluted (typically computer vision). Check out this deep dive into the Python-based framework, PyTorch, and how it easily enables development of machine learning work flows. 



We hope you’ll join us in 2019 as we take a deeper look into the most cutting-edge technology.

Going to Print—the Cimpress Machine Learning Story

Read the Case Study

Machine learning can automate business processes, but maybe more importantly,
it can improve customer experience—just look at Cimpress.

Cimpress, the parent company of VistaPrint, is one of the foremost aggregators of customized merchandise in the world with more than 10,000 employees spanning multiple continents. It has a mind for ethically and environmentally sustainable product production and has grown rapidly since its inception in 1994, while maintaining its ethos of staying small even as it gets big.

Cimpress integrates ML into its online experience

By 2016, Cimpress was running up against the challenge of deploying its models at
scale—a huge undertaking for any company to integrate into its existing tech infrastructure. The Cimpress team realized the effort required to manually deploy
ML models was slowing them down and started looking for solutions.

Cimpress tested many potential solutions but found Algorithmia’s Serverless AI Layer to be the perfect fit for deploying and managing its models at scale. The AI Layer reduced the number of full-time developers it required to maintain and optimize its systems.

Algorithmia is able to ensure seamless future deployments of machine learning projects for Cimpress without costly or time-intensive rollouts.

The Algorithmia collaboration is accelerating Cimpress’ ability to offer wider customer focus without reducing its commitment to quality and efficiency.

Cimpress was ahead of the curve in understanding core principles of machine learning

Of course, companies should spend time distilling and identifying their core business needs and gaps, like Cimpress did, before looking to incorporate machine learning says Chief Decision Intelligence Engineer at Google and widely published writer about all things AI and machine learning, Cassie Koryzov (Towards Data Science, 2018). An outside firm with expertise in building customized ML infrastructure is often better suited to meet the automation needs than internal developers.

Entrepreneur and former principal data scientist at LinkedIn Peter Skomoroch also calls for using outside experts to build machine learning into business models.

Learn more about Cimpress’ journey into employing Algorithmia’s AI Layer:Read the Case Study

Model Evaluations Beyond Compare

At Algorithmia, we strive first and foremost to meet customer needs, and we’re
releasing a new feature within the AI Layer to help you conduct model comparison.
Model Evaluations is a machine learning tool that lets you create a process for running models concurrently to gauge performance. You can test similar models against one another or compare different versions of one model using criteria you define. Model Evaluations makes comparing machine learning models in a production environment
easy and repeatable.  

If you have ever wanted to know which risk score algorithm is the best for your dataset, Model Evaluations can help. It can test models for accuracy, quality, error rates, drift, or any other performance indicator you specify. Evaluations can be created for an individual user or be organization-owned to enable collaboration across teams. Simply load a new model into the platform and run tests against your own models or those in the marketplace. We plan on making this tool part of the standard UI experience in a future release of Algorithmia Enterprise, but it is available for early access right now

Model Evaluations logo

Comparing models is important because testing and comparing models is an integral part of any development and deployment cycle. Achieve a competitive advantage over other models, build your brand’s credibility, and be certain that new versions outperform previous versions. Other benefits of Model Evaluations:

  • Improve model accuracy and performance
  • Test models before deploying
  • Conduct faster comparisons
  • Get results quicker

Sign up to get early access to our model comparison tool.

To learn more about Model Evaluations, you can find additional documentation, examples, and a step-by-step walkthrough in the Developer Center. But start here with this video we’ve put together demoing the Model Evaluations tool: 

Algorithmia is a leader in the machine learning space, and we care about building
smarter models, so please tell us
 about your experience. We’re eager to hear
your suggestions or ideas!

Model Evaluations will help data scientists compare the quality of different models or even measure the effectiveness of new versions of the same model.