Algorithmia Blog - Deploying AI at scale

Flexibility, Scale, and Algorithmia’s Edge in Machine Learning

At Algorithmia, we’ve always been maniacally focused on the deployment of machine learning models at scale. Our research shows that deploying algorithms is the main challenge for most organizations exploring how machine learning can optimize their business.

In a survey we conducted this year, more than 500 business decision makers said that their data science and machine learning teams spent less than 25% of their time on training and iterating models. Most organizations get stuck deploying and productionizing their machine learning models at scale.

Machine Learning in Enterprise research results

The challenge of productionizing models at scale comes late in the lifecycle of enterprise machine learning but is often critical to getting a return on investment on AI. Being able to support heterogeneous hardware, conduct versioning of models, and run model evaluations is underappreciated until problems crop up from not having taken these steps.

Recent Trends
At the AWS re:Invent conference in Las Vegas this week, Amazon announced several updates to SageMaker, its machine learning service. Notable were mentions of forthcoming forecast models, a tool for building datasets to train models, an inference service for cost savings, and a small algorithm marketplace to—as AWS describes—“put [machine learning] in the hands of every developer.”

“What AWS just did was cement the notion that discoverability and accessibility of AI models are key to success and adoption at the industry level, and offering more marketplaces and options to customers is what will ultimately drive the advancement
of AI.”

–Kenny Daniel, CTO, Algorithmia

Amazon and other cloud providers are increasing their focus on novel uses for machine learning and artificial intelligence, which is great for the industry writ large. Algorithmia will continue to provide users seamless deployment of enterprise machine learning models at scale in a flexible, multi-cloud environment.

Deploying at Scale
For machine learning to make a difference at the enterprise level, deployment at scale is critical and making post-production deployment of models easy is mandatory. Algorithmia has four years of experience putting customer needs first, and we focus our efforts on providing scalability, flexibility, standardization, and extensibility.

We are heading toward a world of standardization for machine learning and AI, and companies will pick and choose the tools that will make them the most successful. We may be biased, but we are confident that Algorithmia is the best enterprise platform for companies looking to get the most out of their machine learning models because of our dedication to post-production service.

Being Steadfastly Flexible
Users want to be able to select from the best tools in data labeling, training, deployment, and productionization. Standard, customizable frameworks like PyTorch and TensorFlow and common file formats like ONNX increase flexibility for users for their specific needs. Algorithmia has been preaching and executing on this for years.

Standard, customizable frameworks increase flexibility for users for their specific needs. Algorithmia has been preaching this for years.
–Kenny Daniel, CTO, Algorithmia

Algorithmia’s Commitment
For at-scale enterprise machine learning, companies need flexibility and modular applications that easily integrate with their existing infrastructure. Algorithmia hosts the largest machine learning model marketplace in the world, with more than 7,000 models, and more than 80,000 developers use our platform.

“I expect more AI marketplaces to pop up over time and each will have their strengths and weaknesses. We have been building these marketplaces inside the largest enterprises, and I see the advantages of doing this kind of build-out to accelerate widespread
AI adoption.”

–Diego Oppenheimer, CEO, Algorithmia


It is Algorithmia’s goal to remain focused on our customers’ success, pushing the machine learning industry forward. We encourage you to try out our platform, or better yet, book a demo with one of our engineers to see how Algorithmia’s AI layer is the best in class.