Building an Operating System for AI

How Microservices and Serverless Computing Enable the Next Generation of Machine Intelligence

ALGORITHMIA

Diego Oppenheimer, CEO
diego@algorithmia.com
About Me

Diego Oppenheimer - Founder and CEO - Algorithmia

- Product developer, entrepreneur, extensive background in all things data.
- Founder of algorithmic trading startup
- BS/MS Carnegie Mellon University
Make state-of-the-art algorithms discoverable and accessible to everyone.
Algorithmia.com
AI/ML scalable infrastructure on demand + marketplace

- Function-as-a-service for Machine & Deep Learning
- Discoverable, live inventory of AI
- Monetizable
- Composable

- Every developer on earth can make their app intelligent
“There’s an algorithm for that!”

40K DEVELOPERS 3.5K ALGORITHMS
How do we do it?

- ~3,500 algorithms (40k w/ different versions)
- Each algorithm: 1 to 1,000 calls a second, fluctuates, no devops
- ~15ms overhead latency
- Any runtime, any architecture
Characteristics of AI

- Two distinct phases: training and inference
- Lots of processing power
- Heterogenous hardware (CPUs, GPUs, TPUs, etc.)
- Limited by compute rather than bandwidth
- “Tensorflow is open source, scaling it is not.” - Kenny Daniel
<table>
<thead>
<tr>
<th>TRAINING</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWNER: Data Scientists</td>
</tr>
<tr>
<td>□ Long compute cycle</td>
</tr>
<tr>
<td>□ Fixed load (Inelastic)</td>
</tr>
<tr>
<td>□ Stateful</td>
</tr>
<tr>
<td>□ Single user</td>
</tr>
</tbody>
</table>
Analogous to dev tool chain.
Building and iterating over a model is similar to building an app.
Use Case
Jian Yang made an app to recognize food “SeeFood”. Fully trained. Works on his machine.
Use Case

He deployed his trained model to a GPU-enabled server
Use Case
The app is a hit!
Use Case

... and now his server is overloaded.
MICROSERVICES: the design of a system as independently deployable, loosely coupled services.

ADVANTAGES
- Maintainability
- Scalability
- Rolling deployments

SERVERLESS: the encapsulation, starting, and stopping of singular functions per request, with a just-in-time-compute model.

ADVANTAGES
- Cost / Efficiency
- Concurrency built-in
- Speed of development
- Improved latency

We’ll be talking about Microservices & Serverless Computing
Analogous to dev tool chain. Building and iterating over a model is similar to building an app.
Analogous to dev tool chain. Building and iterating over a model is similar to building an app.

TRAINING

OWNER: Data Scientists
- Long compute cycle
- Fixed load (Inelastic)
- Stateful
- Single user

INFERENCEx

OWNER: DevOps
- Short compute bursts
- Elastic
- Stateless
- Multiple users

Analogous to an OS. Running concurrent models requires task scheduling.
TRAINING

OWNER: Data Scientists
- Long compute cycle
- Fixed load (Inelastic)
- Stateful
- Single user

INFERENCEx

OWNER: DevOps
- Short compute bursts
- Elastic
- Stateless
- Multiple users

Metal or VM

Containers
<table>
<thead>
<tr>
<th>TRAINING</th>
<th>INFEERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWNER: Data Scientists</td>
<td>OWNER: DevOps</td>
</tr>
<tr>
<td>- Long compute cycle</td>
<td>- Short compute bursts</td>
</tr>
<tr>
<td>- Fixed load (Inelastic)</td>
<td>- Elastic</td>
</tr>
<tr>
<td>- Stateful</td>
<td>- Stateless</td>
</tr>
<tr>
<td>- Single user</td>
<td>- Multiple users</td>
</tr>
</tbody>
</table>

Metal or VM

Containers

Kubernetes
TRAINING

OWNER: Data Scientists
- Long compute cycle
- Fixed load (Inelastic)
- Stateful
- Single user

INFEREECE

OWNER: DevOps
- Short compute bursts
- Elastic
- Stateless
- Multiple users

Metal or VM

Containers
Kubernetes

REST API
Why Microservices?

- Elastic
- Scalable
- Software agnostic
- Hardware agnostic
Why Serverless?

- Cost / Efficiency
- Concurrency built-in
- Improved latency
Why Serverless - Cost Efficiency

Jian Yang's "SeeFood" is most active during lunchtime.
Traditional Architecture - Design for Maximum

40 machines 24 hours. $648 \times 40 = $25,920 per month
Autoscale Architecture - Design for Local Maximum

19 machines 24 hours. $648 \times 40 = \$12,312 \text{ per month}
Serverless Architecture - Design for Minimum

Avg. of 21 calls / sec, or equivalent of 6 machines. $648 * 6 = $3,888 per month
Why Serverless - Concurrency

Load Balancer

GPU-enabled Servers
Why Serverless - Improved Latency

Portability = Low Latency
ALSO:

GPU Memory Management, Job Scheduling, Cloud Abstraction, etc.
An Operating System for AI
Runtime Abstraction

Support any programming language or framework, including interoperability between mixed stacks.

Elastic Scale

Prioritize and automatically optimize execution of concurrent short-lived jobs.

Cloud Abstraction

Provide portability to algorithms, including public clouds or private clouds.

Discoverability, Authentication, Instrumentation, etc.
Kernel: Elastic Scale
Composability

Composability is critical for AI workflows because of data processing pipelines and ensembles.
Kernel: Elastic Scale + Intelligent Orchestration

- FoodClassifier
 - CPU util, GPU util, Memory util, IO util

- FruitClassifier
 - CPU util, GPU util, Memory util, IO util

- VeggieClassifier
 - CPU util, GPU util, Memory util, IO util
Knowing that:

- Algorithm A always calls Algorithm B
- Algorithm A consumes X CPU, X Memory, etc
- Algorithm B consumes X CPU, X Memory, etc

Therefore we can slot them in a way that:

- Reduce network latency
- Increase cluster utilization
- Build dependency graphs
Kernel: Runtime Abstraction

FoodClassifier

FruitClassifier

VeggieClassifier
Kernel: Cloud Abstraction - Storage

No storage abstraction
s3 = boto3.client("s3")
obj = s3.get_object(Bucket="bucket-name", Key="records.csv")
data = obj["Body"].read()

With storage abstraction

data = Algorithmia().client.file("blob://records.csv").get()
Kernel: Cloud Abstraction

<table>
<thead>
<tr>
<th>Compute</th>
<th>EC2</th>
<th>CE</th>
<th>VM</th>
<th>Nova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoscaling</td>
<td>Autoscaling Group</td>
<td>Autoscaler</td>
<td>Scale Set</td>
<td>Heat Scaling Policy</td>
</tr>
<tr>
<td>Load Balancing</td>
<td>Elastic Load Balancer</td>
<td>Load Balancer</td>
<td>Load Balancer</td>
<td>LBaaS</td>
</tr>
<tr>
<td>Remote Storage</td>
<td>Elastic Block Store</td>
<td>Persistent Disk</td>
<td>File Storage</td>
<td>Block Storage</td>
</tr>
</tbody>
</table>

Partial Source: Sam Ghods, KubeConf 2016
Summary - What makes an OS for AI?

- Stack-agnostic
- Composable
- Self-optimizing
- Auto-scaling
- Monitorable
- Discoverability
Punched Cards
1970s
Unix
Multi-tenancy, Composability
DOS
Hardware Abstraction
GUI (Win/Mac)
Accessibility
iOS/Android
Built-in App Store (Discoverability)
AI is here

Punched Cards
1970s

iOS/Android
Built-in App Store
(Discoverability)
FREE STUFF:

Signup with code: CloudSummit17 for $50 on us.

Thank you!

Diego Oppenheimer
CEO

diego@algorithmia.com
@doppenhe
more slides
The New Moats
Kernel: Cloud Abstraction - Storage

```python
# init
client = Algorithmia.client()

# get data (S3)
s3 = boto3.client("s3")
obj = s3.get_object(Bucket="bucket-name",
                   Key="records.csv")
data = obj["Body"].read()

# remove seasonality
data = client.algo("ts/RemoveSeasonality").pipe(data).result

# forecast time series
data = client.algo("ts/ForecastLSTM").pipe(data).result
```

```python
# init
client = Algorithmia.client()

# get data (anything)
data = client.file("blob://records.csv").get()

# remove seasonality
data = client.algo("ts/RemoveSeasonality").pipe(data).result

# forecast time series
data = client.algo("ts/ForecastLSTM").pipe(data).result
```
MY_ALGORITHM.py

```python
client = Algorithmia.client()
data = client.file("blob://records.csv").get()

# remove seasonality
data = client.algo("ts/RemoveSeasonality").pipe(data).result

# forecast time series
data = client.algo("ts/ForecastLSTM").pipe(data).result
```
Kernel: Elastic Scale + Intelligent Orchestration

MY_ALGORITHM.py

client = Algorithmia.client()
data = client.file("blob://records.csv").get()

remove seasonality
data = client.algo("ts/RemoveSeasonality").pipe(data).result

forecast time series
data = client.algo("ts/ForecastLSTM").pipe(data).result
Kernel: Elastic Scale + Intelligent Orchestration

Knowing that:
- Algorithm A always calls Algorithm B
- Algorithm A consumes X CPU, X Memory, etc
- Algorithm B consumes X CPU, X Memory, etc

Therefore we can slot them in a way that:
- Reduce network latency
- Increase cluster utilization
- Build dependency graphs
MY_ALGORITHM.py

client = Algorithmia.client()
data = client.file("blob://records.csv").get()

remove seasonality
data = client.algo("ts/RemoveSeasonality").pipe(data).result

forecast time series
data = client.algo("ts/ForecastLSTM").pipe(data).result
Challenges

- **Machine learning**
 - CPU/GPU/Specialized hardware
 - Multiple frameworks, languages, dependencies
 - Called from different devices/architectures

- **“Snowflake” environments**
 - Unique cloud hardware and services

- **Uncharted territory**
 - Not a lot of literature, errors messages sometimes cryptic (can’t just stackoverflow)